Jon T. Skare, PhD

Jon T. Skare, PhD

Professor and Associate Head

Department of Microbial Pathogenesis and Immunology
8447 Riverside Pkwy
Medical Research & Education Building (MREB), Rm. 3004
Bryan, TX   77807-3260

Phone: 979.436.0353
Fax: 979.436.0360

Education and Post-Graduate Training

BS University of California at Irvine (1986)

PhD Washington State University (1992)

Postdoc. University of California-Los Angeles (1992-96)

Research Interests

My laboratory studies Borrelia burgdorferi, the spirochetal bacterium that causes Lyme disease. B. burgdorferi is the most common arthropod-borne infectious agent in the United States, with approximately 300,000 cases diagnosed annually.  Given these numbers, it is clear that Lyme disease is a significant public health concern.

The goals of my research are to understand how B. burgdorferi causes disease and adapts to different niches it occupies by: (1) addressing the role of attachment, colonization and subsequent dissemination using molecular genetic methodologies to inactivate genes involved in adherence of B. burgdorferi to host tissues; and (2) understanding how B. burgdorferi responds to the hosts they infect to modulate gene expression accordingly.

In regard to the first project, and in collaboration with Magnus Höök’s group, we are studying how binding by B. burgdorferi to host structures impacts the infectious process.  Our initial studies evaluated the role of the fibronectin binding protein of B. burgdorferi (BBK32) in borrelial pathogenesis. This work suggested that BBK32 is required for full virulence in the mouse animal model system of Lyme borreliosis.  Subsequent studies have focused on the borrelial decorin binding protein adhesins, DbpBA.  When the dbpBA genes are deleted from B. burgdorferi, the spirochetes are significantly attenuated in the mouse model of infection, indicating that the Dbp proteins are essential for maximum virulence of B. burgdorferi.  We are currently addressing how additional B. burgdorferi proteins affect colonization, dissemination, and persistence, as well as how they alter the host immune response, to further elucidate the importance of these borrelial proteins in Lyme pathogenesis.

For the second project, the role of the BosR regulator is being addressed. The BosR protein is a homologue to the PerR regulator, a protein whose activity in other bacterial systems is associated with a response to oxidative stressors.  Using both biochemical and genomic based approaches, we have identified several genes that are putatively regulated by BosR.  We contend that B. burgdorferi responds to the redox status of its locale and uses this, in addition to pH and temperature, as a cue to modulate gene expression in order to adapt to its environment via BosR as well as other regulatory pathways.  Along these lines, we found that BosR interfaces with the Rrp2-RpoN-RpoS regulatory cascade to alter the expression of genes and the production of proteins involved in borrelial pathogenesis.  As such, BosR is critical for both physiological and pathogenic properties of B. burgdorferi.

Research Laboratory Members

Post Docs

  • Hui Zhi, PhD
  • Jialei Xie, PhD

Graduate Students

  • Diana Medina


  • Caleb Grimes
  • Mahala Sorrell
  • Parmida Tehranchi

Selected Publications

Ramsey, M.E., Hyde, J.A., Medina-Perez, D.N., Lin, T., Gao, L., Lundt, M.E., Li, X., Norris, S.J., Skare, J. T., and L. Hu.  2017.   A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species.  PLoS Pathog. 13(2):e1006225

Skare, J.T., Shaw, D.K., Trzeciakowski, J.P., and J. A. Hyde. 2016.  In vivo imaging demonstrates that Borrelia burgdorferi ospC is uniquely expressed temporally and spatially throughout experimental infection.  PLoS One,  11(9): e0162501.

Ebady, R., Katz, A., Boczula, A.E., Kim, Y.-R., Gupta, N., Tang, T., Odisho, T., Zhi, H., Simmons, C.A., Skare, J.T., and T. J. Moriarty.  2016.  Biomechanics of Borrelia burgdorferi vascular interactions. Cell Reports,  16(10): 2593-2604. 

Links to media coverage:

Garcia B.L.*, Zhi, H.*, Wager, B, M. Höök, and J.T. Skare.  2016.  Borrelia burgdorferi BBK32 Inhibits the Classical Complement Pathway by Blocking Activation of the C1 Complement Complex.  PLoS Pathog 12(1): e1005404.
    *these co-authors contributed equivalently to this manuscript

Wager, B., Shaw, D.K., Groshong, A.M., Blevins, J.S., and J.T. Skare. 2015.  BB0744 affects tissue tropism and spatial distribution of Borrelia burgdorferiInfect Immun. 83(9): 3693-3703.
Zhi, H., Barbu, E.M., Weening, E.H., Hyde, J.A., Höök, M., and J.T. Skare.  2015.  The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis.  Mol. Microbiol. 96(1): 68-83.

Moriarty, T. J., Shi, M., Lin, Y.-P., Ebady, R., Zhou, H., Odisho, T., Hardy, P.-O., Salman-Diligimen, A., Wu, J., Weening, E.H., Skare, J. T., Kubes, P., Leong, J., and G. Chaconas.  2012.  Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol. 86(5): 1116-1131.

Shaw, D. K., Hyde, J. A., and J. T. Skare. 2012.  The BB0646 protein demonstrates lipase and hemolytic activity associated with Borrelia burgdorferi, the etiological agent of Lyme disease. Mol Microbiol. 83(2):319-334.

Hyde, J.A., Weening, E.H., Chang, M.H., Trzeciakowski, J.P., Höök, M., Cirillo, J.D., and J. T. Skare.  2011.  Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin binding protein BBK32 is required for optimal infectivity. Mol Microbiol. 82(1): 99-113.

Wu, J., Weening, E. H., Faske, J., Höök, M. and J. T. Skare. 2011. Invasion of eukaryotic cells by Borrelia burgdorferi requires β₁ integrins and Src kinase activity. Infect Immun., 79(3): 1338-1348.         
    Featured as a “Spotlight” Article in the March 2011 issue

Hyde, J.A., Weening, E.H., and J. T. Skare.  2011. Genetic Transformation of Borrelia burgdorferi. Curr Protoc Microbiol. Unit 12C.4.1-17.

Gherardini, F.C., Boylan, J., Lawrence, K. and J.T. Skare. 2010.  Metabolism and Physiology of Borrelia.  In Borrelia: Molecular and Cellular Biology.  Samuels, D.S. and Radolf, J.D. (eds).  Norfolk: Caister Academic Press: 103-138.

Skare, J.T., Carroll J.A., Yang, X.F., Samuels, D.S. and D.R. Akins. 2010.  Gene Regulation, Transcriptomics, and Proteomics.  In Borrelia: Molecular and Cellular Biology.  Samuels, D.S. and Radolf, J.D. (eds).  Norfolk: Caister Academic Press: 67-101

Hyde, J.A., Shaw, D.K., Smith, R., Trzeciakowski, J.P., and J. T. Skare.  2010. Characterization of a Conditional bosR Mutant in Borrelia burgdorferi. Infect. Immun. 78(1): 265-274.         
    Featured as a “Spotlight” Article

Hyde, J.A., Shaw, D.K., Smith, R., Trzeciakowski, J.P., and J. T. Skare.  2009.  The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Mol Microbiol. 74(6): 1344-1355.
    A MicroCommentary accompanied this article

Prabhakaran, S., Liang, X., Skare, J. T., Potts, J. R. and M. Höök.  2009.  A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules.  PLoS ONE 4(4): e5412.

Weening E. H., Parveen. N., Trzeciakowski, J. P., Leong, J. M., Höök, M., and J. T.  Skare.  2008. Borrelia burgdorferi Lacking DbpBA Exhibit an Early Survival Defect During Experimental Infection. Infect. Immun. 76(12): 5694-5705.

Hyde, J. A., Trzeciakowski, J. P. and J. T. Skare. 2007. Borrelia burgdorferi alters its gene expression and antigenic profile in response to CO2 levels. J. Bacteriol. 189(2): 437-445.

Seshu, J., Esteve-Gassent, M. D., Labandeira-Rey, M., Kim, J. H., Trzeciakowski, J. P., Höök, M. and J. T. Skare. 2006. Inactivation of the Fibronectin Adhesin Gene bbk32 Significantly Attenuates the Infectivity Potential of Borrelia burgdorferi. Mol Microbiol. 59(5): 1591-1601.

Labandeira-Rey, M. Seshu J., and J. T. Skare. 2003. The Absence of Linear Plasmid 25 (lp25) or 28-1 (lp28-1) of Borrelia burgdorferi Dramatically Alters the Kinetics of Experimental Infection Via Distinct Mechanisms. Infect Immun . 71(8): 4608-4613.

Ojaimi, C., Brooks, C., Casjens, S., Rosa, P., Elias, A., Barbour, A., Jasinskas, A., Benach, J., Katona, L., Radolf, J., Caimano, M., Skare, J., Swingle, K., Akins, D., and I. Schwartz. 2003. Profiling Temperature-induced Changes in Borrelia burgdorferi Gene Expression using Whole Genome Arrays. Infect. Immun . 71(4): 1689-1705.

Labandeira-Rey, M. and J. T. Skare. 2001. Decreased Infectivity in Borrelia burgdorferi strain B31 is Associated with the Loss of Either Linear Plasmid 25 or 28-1. Infect. Immun. 69(1): 446-455